Organ sculpting by patterned extracellular matrix stiffness

نویسندگان

  • Justin Crest
  • Alba Diz-Muñoz
  • Dong-Yuan Chen
  • Daniel A Fletcher
  • David Bilder
چکیده

How organ-shaping mechanical imbalances are generated is a central question of morphogenesis, with existing paradigms focusing on asymmetric force generation within cells. We show here that organs can be sculpted instead by patterning anisotropic resistance within their extracellular matrix (ECM). Using direct biophysical measurements of elongating Drosophila egg chambers, we document robust mechanical anisotropy in the ECM-based basement membrane (BM) but not in the underlying epithelium. Atomic force microscopy (AFM) on wild-type BM in vivo reveals an anterior-posterior (A-P) symmetric stiffness gradient, which fails to develop in elongation-defective mutants. Genetic manipulation shows that the BM is instructive for tissue elongation and the determinant is relative rather than absolute stiffness, creating differential resistance to isotropic tissue expansion. The stiffness gradient requires morphogen-like signaling to regulate BM incorporation, as well as planar-polarized organization to homogenize it circumferentially. Our results demonstrate how fine mechanical patterning in the ECM can guide cells to shape an organ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphogenesis: Shaping Tissues through Extracellular Force Gradients.

Organ sculpting requires directed physical force generation. Force imbalances are primarily thought to arise from within cells. A new study, however, demonstrates that an extracellular-matrix-based stiffness gradient in the Drosophila egg chamber instructs tissue elongation.

متن کامل

Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device.

Cellular responses to chemical cues are at the core of a myriad of fundamental biological processes ranging from embryonic development to cancer metastasis. Most of these biological processes are also influenced by mechanical cues such as the stiffness of the extracellular matrix. How a biological function is influenced by a synergy between chemical concentration and extracellular matrix stiffn...

متن کامل

Simultaneously Targeting Myofibroblast Contractility and Extracellular Matrix Cross-Linking as a Therapeutic Concept in Airway Fibrosis.

Fibrosis after solid organ transplantation is considered an irreversible process and remains the major cause of graft dysfunction and death with limited therapies. This remodeling is characterized by aberrant accumulation of contractile myofibroblasts that deposit excessive extracellular matrix (ECM) and increase tissue stiffness. Studies demonstrate, however, that a stiff ECM itself promotes f...

متن کامل

Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus.

Adherent cells are strongly influenced by the mechanical aspects of biomaterials, but little is known about the cellular effects of spatial variations in these properties. This work describes a novel method to produce polymeric cell culture surfaces containing micrometer-scale regions of variable stiffness. Substrates made of acrylamide or poly(dimethylsiloxane) were patterned with 100- or 10-m...

متن کامل

Extracellular Matrix Density Regulates the Rate of Neovessel Growth and Branching in Sprouting Angiogenesis

Angiogenesis is regulated by the local microenvironment, including the mechanical interactions between neovessel sprouts and the extracellular matrix (ECM). However, the mechanisms controlling the relationship of mechanical and biophysical properties of the ECM to neovessel growth during sprouting angiogenesis are just beginning to be understood. In this research, we characterized the relations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017